Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model for Converting SI Engine Flame Arrival Signals into Flame Contours

1995-02-01
950109
A model which converts flame arrival times at a head gasket ionization probe, used in a spark-ignition engine, into flame contours has been developed. The head gasket was manufactured at MIT using printed circuit board techniques. It has eight electrodes symmetrically spaced around the circumference (top of cylinder liner) and it replaces the conventional head gasket. The model is based on engine flame propagation rate data taken from the literature. Data from optical studies of S.I. engine combustion or studies utilizing optical fiber or ionization probe diagnostics were analyzed in terms of the apparent flame speed and the entrainment speed (flame speed relative to the fluid ahead of the flame). This gives a scaling relationship between the flame speed and the mass fraction burned which is generic and independent of the chamber shape.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Liquid Gasoline Behavior in the Engine Cylinder of a SI Engine

1994-10-01
941872
The liquid fuel entry into the cylinder and its subsequent behavior through the combustion cycle were observed by a high speed CCD camera in a transparent engine. The videos were taken with the engine firing under cold conditions in a simulated start-up process, at 1,000 RPM and intake manifold pressure of 0.5 bar. The variables examined were the injector geometry, injector type (normal and air-assisted), injection timing (open- and closed-valve injection), and injected air-to-fuel ratios. The visualization results show several important and unexpected features of the in-cylinder fuel behavior: 1) strip-atomization of the fuel film by the intake flow; 2) squeezing of fuel film between the intake valve and valve seat at valve closing to form large droplets; 3)deposition of liquid fuel as films distributed on the intake valve and head region. Some of the liquid fuel survives combustion into the next cycle.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data

1993-10-01
932749
A single-zone burn-rate analysis based on measured cylinder pressure data proposed by Gatowski et al. in 1984 was evaluated over the full load and speed range of a spark-ignition engine. The analysis, which determines the fuel mass burning rate based on the First Law of Thermodynamics, includes sub-models for the effects of residual fraction, heat transfer, and crevices. Each of these sub-models was assessed and calibrated. Cylinder pressure data over the full engine operating range obtained from two different engines were used to examine the robustness of the analysis. The sensitivity of predictions to the parameters wall temperature, heat transfer model coefficients and exponent, swirl ratio, motoring polytropic constant, in-cylinder mass, and to uncertainty in pressure data was evaluated.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Predicting the Effects of Air and Coolant Temperature, Deposits, Spark Timing and Speed on Knock in Spark Ignition Engines

1992-10-01
922324
The prediction of knock onset in spark-ignition engines requires a chemical model for the autoignition of the hydrocarbon fuel-air mixture, and a description of the unburned end-gas thermal state. Previous studies have shown that a reduced chemistry model developed by Keck et al. adequately predicts the initiation of autoignition. However, the combined effects of heat transfer and compression on the state of the end gas have not been thoroughly investigated. The importance of end-gas heat transfer was studied with the objective of improving the ability of our knock model to predict knock onset over a wide range of engine conditions. This was achieved through changing the thermal environment of the end gas by either varying the inlet air temperature or the coolant temperature. Results show that there is significant heating of the in-cylinder charge during intake and a substantial part of the compression process.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

The Effect of Piston Temperature on Hydrocarbon Emissions from a Spark-Ignited Direct-Injection Engine

1991-02-01
910558
Light-load unburned hydrocarbon emissions were studied experimentally in a spark-ignited direct-injection engine burning gasoline where the piston temperature was varied. The test engine was a single-cylinder Direct Injection Stratified-Charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System. At a single low load operating condition, the piston temperature was varied by 50 K by controlling the cooling water and oil temperature. The effect of this change on unburned hydrocarbon emissions and heat release profiles was studied. It was found that by carefully controlling the intake air temperature and pressure to maintain constant in-cylinder conditions at the time of injection, the change in piston temperature did not have a significant effect on the unburned hydrocarbon emissions from the engine.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Engine Knock Characteristics at the Audible Level

1991-02-01
910567
The effects of combustion chamber and intake valve deposit build-up on the knocking characteristics of a spark ignition engine were studied. A Chrysler 2.2 liter engine was run continuously for 180 hours to build up intake valve and combustion chamber deposits. In the tests reported here, the gasoline used contained a deposit controlling fuel additive. The engines's octane requirement increased by 10 research octane numbers during this extended engine operating period. At approximately 24 hour intervals during these tests, the engine was audibly knock rated to determine its octane requirement. Cylinder pressure data was collected during knocking conditions to investigate the knocking characteristics of each cylinder, and deposit build-up effects on those statistics. Cylinder-to-cylinder variations in knock statistics were studied. Analysis of the data indicated that some 20 to 40 percent of cycles knock before the knock is audibly detected.
Technical Paper

The Effect of Fuel Characteristics on Combustion in a Spark-Ignited Direct-Injection Engine

1990-10-01
902063
An experimental study was conducted on a spark-ignited direct-injection engine burning fuels with different evaporation and autoignition characteristics. The test engine was a single-cylinder Direct-Injection Stratified-Charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System. Two fuels were tested and compared with a baseline gasoline fuel: diesel fuel, and gasoline mixed with an ignition improver. The tests were done at low to medium engine loads. Diesel fuel was found to have similar levels of hydrocarbon (HC) emissions as gasoline but had different characteristics. The optimum timing for diesel fuel was retarded from that for gasoline and combustion variability was much less with diesel than with gasoline. Gasoline with a commercial ignition improver normally used to increase the cetane number of diesel fuel was also tested. The effect of changing the autoignition quality of the fuel depended on the injector used.
Technical Paper

The Importance of Injection System Characteristics on Hydrocarbon Emissions from a Direct-Injection Stratified-Charge Engine

1990-02-01
900609
The effects of injection variability, low velocity fuel injection, and injector orifice size on unburned hydrocarbon emissions were studied in a direct-injection stratified-charge (DISC) engine. The engine incorporated a combustion process similar to the Texaco Controlled Combustion System (TCCS) and was operated with gasoline. The variability in the amount of fuel injected per cycle was found to have a negligible effect on HC emissions. Changing the amount of fuel injected at low velocity at the end of injection impacted the HC emissions by up to 50%. A positive pressure differential between the injection line and the combustion chamber when the injector needle closed resulted in more fuel injected at low velocity and increased HC emissions. High speed single frame photography was used to observe the end of injection. Injectors with smaller orifices had substantially lower HC emissions than the baseline injector.
Technical Paper

How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine

1990-02-01
900021
A conventional spark plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and the electrical performance of the ignition system, and how this affects the flame development process in an engine. A schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process, for as many as 100 consecutive cycles. Voltage and current waveforms were recorded to characterize the spark discharge, and cylinder pressure data were used to characterize the engine performance. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, and thereby extend the stable operating regime of the engine. At conditions close to the stable operating limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development.
Technical Paper

In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine

1990-02-01
900485
The residual gas fraction prior to ignition at the vicinity of the spark plug in a single cylinder, two-valve spark ignition engine was measured with a fast-response flame ionization hydrocarbon detector. The technique in using such an instrument is reported. The measurements were made as a function of the intake manifold pressure, engine speed and intake/exhaust valve-overlap duration. Both the mean level of the residual fraction and the statistics of the cycle-to-cycle variations were obtained.
Technical Paper

Combustion Characterization in a Direct-Injection Stratified-Charge Engine and Implications on Hydrocarbon Emissions

1989-09-01
892058
An experimental study was conducted on a direct-injection stratified-charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System and operated with gasoline. Analysis of the injected fuel flow and the heat release showed that the combustion process was characterized by three distinct phases: fuel injection and distribution around the piston bowl, flame propagation through the stratified fuel-air mixture, and mixing-controlled burn-out with the heat-release rate proportional to the amount of unburned fuel in the combustion chamber. This characterization was consistent with previous visualization studies conducted on rapid-compression machines with similar configurations. Experiments with varied injection timing, spark plug location, and spark timing showed that the combustion timing relative to injection was critical to the hydrocarbon emissions from the engine.
Technical Paper

Characterization of Knock in a Spark-Ignition Engine

1989-02-01
890156
Spark-ignition engine knock was characterized in terms of when during the engine cycle and combustion process knock occurred and its magnitude or intensity. Cylinder pressure data from a large number of successive individual cycles were generated from a single-cylinder engine of hemispherical chamber design over a range of operating conditions where knock occurred in some or all of these cycles. Mean values and distributions of following parameters were quantified: knock occurrence crank angle, knock intensity, combustion rate and the end-gas thermodynamic state. These parameters were determined from the cylinder pressure data on an individual cycle basis using a mass-burn-rate analysis. The effects of engine operating variables on these parameters were studied, and correlations between these parameters were examined.
X